pytorch

####

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

####

if torch.cuda.is_available():
device = torch.device(“cuda”) # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings .to("cuda")
z = x + y
print(z)
print(z.to(“cpu”, torch.double)) # .to can also change dtype together!

####

import matplotlib.pyplot as plt
plt.ion() # interactive mode

####

def
set_parameter_requires_grad(model, feature_extracting): if feature_extracting: for param in model.parameters(): param.requires_grad = False # do no train param

Spatial Transform Network

 

class Net(nn.Module):
     def init(self):
         super(Net, self).init()
         self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
         self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
         self.conv2_drop = nn.Dropout2d()
         self.fc1 = nn.Linear(320, 50)
         self.fc2 = nn.Linear(50, 10)    # Spatial transformer localization-network

    self.localization = nn.Sequential(
        nn.Conv2d(1, 8, kernel_size=7),
        nn.MaxPool2d(2, stride=2),
        nn.ReLU(True),
        nn.Conv2d(8, 10, kernel_size=5),
        nn.MaxPool2d(2, stride=2),
        nn.ReLU(True)
    )

    # Regressor for the 3 * 2 affine matrix
    self.fc_loc = nn.Sequential(
        nn.Linear(10 * 3 * 3, 32),
        nn.ReLU(True),
        nn.Linear(32, 3 * 2)
    )

    # Initialize the weights/bias with identity transformation
    self.fc_loc[2].weight.data.zero_()
    self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
       return F.log_softmax(x, dim=1)

model = Net().to(device)

 

 

Copyright OU-Tulsa Lab of Image and Information Processing 2025
Tech Nerd theme designed by Siteturner
transformation hentai prohentai.net my hero academia midnight porn sexc girl flyporntube.info sexy picture video player سكس منوم orivive.com سكس نيك طياز سكس مصري مشعر homeofpornstars.com سكس مص الزبر kd; lphvl iwanktv.pro سكس حرامي
sex video free malayalam indianfuckertube.com xxxsex telugu كس شقراء iporntv.info الفلاسكس horror porn movie 2beeg.mobi chandni ki chudai fate grand order hentai manga hentaiquality.com hentai porno free free xvideo pornon.org antyvidio
اوضاع ساخنه meyzo.org سكس ياباني قصص sexi aunty indianhardfuck.net tamilsexstories4u رجل ينيك بنته xxcmh.com فنون النيك sanny builder hairyporntrends.com xvideo tamilnadu uot jaipur nudevista.pro katrina bf film