pytorch

####

import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)

####

if torch.cuda.is_available():
device = torch.device(“cuda”) # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings .to("cuda")
z = x + y
print(z)
print(z.to(“cpu”, torch.double)) # .to can also change dtype together!

####

import matplotlib.pyplot as plt
plt.ion() # interactive mode

####def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False # do no train param

Spatial Transform Network

 

class Net(nn.Module):
     def init(self):
         super(Net, self).init()
         self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
         self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
         self.conv2_drop = nn.Dropout2d()
         self.fc1 = nn.Linear(320, 50)
         self.fc2 = nn.Linear(50, 10)    # Spatial transformer localization-network

    self.localization = nn.Sequential(
        nn.Conv2d(1, 8, kernel_size=7),
        nn.MaxPool2d(2, stride=2),
        nn.ReLU(True),
        nn.Conv2d(8, 10, kernel_size=5),
        nn.MaxPool2d(2, stride=2),
        nn.ReLU(True)
    )

    # Regressor for the 3 * 2 affine matrix
    self.fc_loc = nn.Sequential(
        nn.Linear(10 * 3 * 3, 32),
        nn.ReLU(True),
        nn.Linear(32, 3 * 2)
    )

    # Initialize the weights/bias with identity transformation
    self.fc_loc[2].weight.data.zero_()
    self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

    # Spatial transformer network forward function
    def stn(self, x):
        xs = self.localization(x)
        xs = xs.view(-1, 10 * 3 * 3)
        theta = self.fc_loc(xs)
        theta = theta.view(-1, 2, 3)

        grid = F.affine_grid(theta, x.size())
        x = F.grid_sample(x, grid)

        return x

    def forward(self, x):
        # transform the input
        x = self.stn(x)

        # Perform the usual forward pass
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
       return F.log_softmax(x, dim=1)

model = Net().to(device)

 

 

Copyright OU-Tulsa Lab of Image and Information Processing 2019
Tech Nerd theme designed by Siteturner